

Application Note Ion exchange capacity of cation exchange resin

Industry Instrument Measurement method Standards

Chemicals Automatic potentiometric titrator Potentiometric titration / Neutralization titration

1. Scope

This Application Note describes an example of measuring the ion exchange capacity of a strongly acidic hydrogen ion type cation exchange resin. A strongly acidic hydrogen ion type cation exchange resin contains the sulfo group (-SO₃H), and as indicated below, exchanges sodium ions, calcium ions, and other cations in the solvent with hydrogen ions.

> $R-SO_3H + Na^+ \rightarrow R-SO_3Na + H^+$ $2R-SO_3H + Ca^{2+} \rightarrow (R-SO3)_2Ca + 2H^+$

In terms of measuring the ion exchange capacity, in light of the properties mentioned above, an applicable method is to add a sodium chloride solution to the cation exchange resin, and then titrate the hydrogen ions released with a sodium hydroxide solution. The exchange capacity is calculated as (mmol/g).

2. Post-measurement procedure

To suppress efflux and enrichment of the electrolyte when storing the electrodes, seal the electrolyte filling port in the combined glass electrode with a rubber stopper.

The performance of the combined glass electrode quickly deteriorates if it is stored while dry. The following storage methods are recommended.

- Short term storage (less than one month): Store it submerged in pure water.
- Long term storage (at least one month): Store it submerged in a 1:1 volume ratio mixture of a pH 4 standard liquid and a 3.3 mol/L aqueous potassium chloride solution.

3. Apparatus					
Main unit Electrode	Automatic potentiometric titrator (standard preamplifier STD) Combined glass electrode (Electrolyte 3.3 mol/L aqueous potassium chloride solution) Temperature compensated electrode				
4. Reagents					

Titration liquid 0.1 mol/L sodium hydroxide solution 1 mol/L sodium chloride solution Additive reagent

5. Procedure

1) Introduce 0.5 g of the cation exchange resin into a beaker and weigh it.

2) Add 10 mL of a 1 mol/L aqueous sodium chloride solution and stir for 1 minute.

3) Add pure water to dilute the solution up to approximately 100 mL, and titrate with a 0.1 mol/L aqueous sodium hydroxide solution.

6. Calculation

Exchange capacity (mmol/g) = (EP1 - BL1) × TF × C1 × K1/S

- EP1 Titration volume required to the first endpoint (mL)
- BL1 Titration volume required for a blank test (0 mL)
- TF Titration solution factor (1.0003)
- C1 Concentration conversion coefficient (0.0001 mol/mL)
- K1 Unit conversion coefficient (1000)
- S Amount of sample introduced (g)

7. Example

— Parameter —

<titr. mode=""></titr.>	Auto Int.	<u><ctrl. para.=""></ctrl.></u>	
<titr. form=""></titr.>	Level Stop	Number of EP	1
		End Sense	Auto
<u><titr. para.=""></titr.></u>		Gain	1
Max Volume	20 (mL)	Data Sampling	Auto
Channel/Unit(Ctrl.)	Ch1, mV	Ctrl. Speed	Standard
Wait Time	0 (s)	Other Control	Standard
Dose Mode	None	Stirrer Speed	4

(The above condition is an example. The setting condition depends on the model.)

- Example of Titration curve -

- Measurement results -

Table 1	1 M	leasurement	result	of	exchange	capaci	itv of	f cation	exchange	resin
10010	L 17.		100010	~ 1	enemange	eapaer		eacton	enemange	100111

	Sample (g)	Titration (mL)	Ion exchange capacity (mmol/g)
1	0.4940	6.2339	1.2623
2	0.4859	6.1134	1.2585
3	0.4911	6.2120	1.2653
Mean			1.2620
SD			0.0034
RSD (%)			0.27

