

Application Note Determination of sodium phosphite pentahydrate

Industry Instrument Measurement method Standards Chemicals Automatic potentiometric titrator Potentiometric titration / Oxidation-reduction titration

1. Scope

The following reaction occurs in the nickel plating solution used for electroless plating (Formula 1). As the plating reaction progresses, by-products (such as phosphite) accumulate and interfere with the deposition of the plating.

 $NiSO_4 + NaH_2PO_2 + H_2O \longrightarrow Ni + NaH_2PO_3 + H_2SO_4$ (Formula 1)

This Application Note introduces an example of measuring sodium phosphite in plating solution (Note 1).

2. Post-measurement procedure

Seal the refill port for electrolyte of reference electrode by rubber septum so that electrolyte is prevented from leaking out or concentrating, and store the electrode.

3. Apparatus

Main unit	Automatic potentiometric titrator (Preamplifier STD)
Electrode	Combined platinum electrode
	(Inner solution : 3.3 mol/L potassium chloride solution)

4. Reagents

Titrant	0.1 mol/L Ammonium iron (II) sulfate (0.1 mol/L Mohr's salt)
Additive	0.1 mol/L Ammonium vanadate (0.1 mol/L Ammonium metavanadate)
	5 w/v %-Silver sulfate solution (Preparation Dissolve 5 g of silver sulfate
	in concentrated sulfuric acid to make the total volume 100 mL)

5. Procedure

- 1) Accurately collect 5 mL of sample into a beaker.
- 2) Accurately add 20 mL of 0.1 mol/L ammonium metavanadate.
- 3) Add 4 mL of 5 % silver sulfate solution (Note 1, Formula 2).
- 4) Add pure water to make the volume about 60 mL, and boil for 5 minutes.
- 5) After cooling to room temperature, titrate with 0.1 mol / L Mohr's salt solution (Note 1, Formula 3).
 - * The Blank test is performed under the same conditions as the sample measurement.

6. Calculation Sodium phosphite (g/L) = (BL1 - EP1) \times TF \times 10.802 / S BL1 Titration amount (mL) of Blank test = 20.0825EP1 Titration amount (mL) TF Factor of Titrant = 0.9992S Sample size (g) 7. Example - Parameter -<Titr. Mode> Auto Int. <Ctrl. Para.> <<u> Titr. Form></u> EP Number of EP 1 End Sense Auto <u><Titr. Para.></u> Gain 1 Max Volume 40mL Data Sampling Auto Channel/Unit(Ctrl.) Ch1, mV Ctrl. Speed Standard Wait Time 0s Other Control Standard Titr. Type Check Stirrer Speed 4 No Check Auto Int. Mode Standard

(Listed above are example settings. Availability of settings may vary by instrument model.)

- Example of Titration curve -

- Measurement results -

Table 1	Measurement result
---------	--------------------

n	Sample (mL)	Titration (mL)	Result (g/L)
1	5.0	18.6226	3.151
2	5.0	18.6218	3.153
3	5.0	18.6406	3.113
Average	-	-	3.139
SD	-	-	0.023
RSD (%)	-	-	0.72

8. Notes

Note 1) The measurement method used was oxidation-reduction titration. A constant excess amount of vanadate oxidizes phosphorous acid. The addition of silver salt as a catalyst is needed in this reaction to allow the oxidation of phosphorous acid to proceed quantitatively (Formula 2). The unreacted vanadate is then titrated with Mohr's salt (Formula 3).

$$2VO_2^+ + H_3PO_3 + 2H^+ \xrightarrow{\bigtriangleup} H_3PO_4 + 2VO^{2+} + H_2O \qquad (Formula 2)$$

$$VO^{2+} + Fe^{2+} + 2H^{+} \longrightarrow VO^{3+} + Fe^{3+} + H_2O$$
 (Formula 3)

