Application Note

Measurement of gas volume and air content in low－malt beer of different size containers（ 350 mL can， 500 mL can） by Gas volume and air content analyzer

Industry
Instrument
Measurement method
Standards

Food \＆beverage
Gas volume and air content analyzer
Gas volume measurement method

1．Scope

Caution
This instrument needs a $6 \mathrm{~mol} / \mathrm{L}$ sodium hydroxide aqueous solution which may cause blindness when it contacts human eyes．Be sure to wear protective goggles during handling it．

The measurement of the gas volume，air content of low－malt beer is an important factor in determining the mouthfeel，taste and flavor，and best－by date．This Application Note introduces an example of measuring commercially available low－malt beer of two different size containers using a gas volume and air content analyzer．The gas volume is calculated by continuously rotating the sample container and measuring the equilibrium pressure of the gas and the sample temperature．Then，gas in the sample is transferred to the absorbent cylinder and the carbon dioxide gas is absorbed by an absorbent solution（sodium hydroxide solution）filled in the cylinder to measure the air content．

2．Precautions

－Measurements should be conducted within a temperature－controlled laboratory room，and the temperature of the instrument and samples must be equalized to that of the room．
－Either the instrument＇s onboard air system，or an independent air compressor，（both of which can adjust to pressures between 0.5 and 0.7 MPaG ），is required for the piercing and rotation of sample bottles and cans．

3．After measurement

－Samples should be disposed of properly after the measurement is complete，as they may be contaminated with the absorbent solution．
－The measurement instrument should be rinsed properly at the end of the day．

4．Apparatus

Equipment Gas volume and air content analyzer

5．Reagents

Absorbent solution	$6 \mathrm{~mol} / \mathrm{L}$ Sodium hydroxide solution
Rinse solution	Pure water

6. Procedure

1) Select "gas volume/gas pressure + air content measurement (GV/P+AIR)" on the measurement mode, and enter the following parameters into the measurement conditions.

< Mode >	GV/P+AIR
GV/P Cal.	EBC
DISSOLVE	AUTO
< Method >	
Start Time	0 sec
Rot0 Time	0 sec
Wait Time	0 sec
Snift Press	.999 MPa
MAX Time	180 sec
MIN Time	0 sec
Error Press	.015 MPa
Rot1 Time	70 sec
Trial Press	.010 MPa
max Time	180 sec
Min Time	0 sec
Trial Count	5 times
Skip Press	.015 MPa
Rot2 Time	20 sec
End Press	.015 MPa

Note that the above measurement parameters are an example and optimizing these parameters might be necessary depending on the sample's property.
2) Set the sample bottle/can on the sample stage and press the Start button.

7. Example

Table 1 shows the measurement results of low-malt beer A (350 mL can, 500 mL can).
Table 1. Measurement results (Volume 350 mL can and 500 mL can)*

Sample	n	Air Volume [mL]	$\begin{gathered} \text { Gas } \\ \text { Volume } \\ {[\mathrm{g} / \mathrm{kg}]} \\ \hline \hline \end{gathered}$	Gas Press [MPa]	Press [MPa]	Temp. $\left[{ }^{\circ} \mathrm{C}\right]$
Low- malt beer A	1	0.62	5.41	0.243	0.278	22.7
	2	0.41	5.54	0.251	0.279	22.6
	3	0.48	5.40	0.242	0.266	22.6
	4	0.46	5.40	0.242	0.266	22.5
	5	0.46	5.40	0.242	0.266	22.6
$\begin{gathered} 350 \mathrm{~mL} \\ \text { can } \end{gathered}$	Mean	0.48	5.43	0.244	0.271	22.6
	SD	0.08	0.06	0.004	0.007	0.1
	$\operatorname{RSD}(\%)$	16.3	1.1	1.6	2.5	0.3
Low- malt beer A	1	0.65	5.45	0.245	0.264	22.1
	2	0.67	5.45	0.245	0.261	22.0
	3	0.64	5.46	0.246	0.262	22.1
	4	0.63	5.44	0.244	0.273	22.3
	5	0.64	5.47	0.246	0.265	22.2
$500 \mathrm{~mL}$can	Mean	0.65	5.45	0.245	0.265	22.2
	SD	0.02	0.01	0.001	0.005	0.1
	$\operatorname{RSD}(\%)$	2.3	0.2	0.3	1.8	0.5

* Measurement items

Air Volume The volume of gas other the carbon dioxide in the container (mL)
Gas Volume Carbon dioxide volume (V/V) of 1 mL sample volume
Gas Press \quad Converted pressure in sample bottle/can at $20^{\circ} \mathrm{C}(\mathrm{MPa})$
Press Measured pressure (MPa)
Temp. \quad Measured sample temperature $\left({ }^{\circ} \mathrm{C}\right)$

