

Application Note Ferric ion in pickling solution

:

Iron and steel Automatic potentiometric titrator Potentiometric titration / Redox titration

1. Scope

Ferric ion (Fe³⁺) in pickling solution was measured by redox titration.

Adding potassium iodide (KI) to a sample, iodine (I₂) is released by reaction between Fe^{3+} and iodide ion (I). Released free I₂ was titrated with 0.1 mol/L sodium thiosulfate (Na₂S₂O₃) solution. An inflection point on the titration curve was regarded as the end point, and the Fe³⁺ concentration was calculated from the volume of Na₂S₂O₃ solution consumed to titrate sample to the end point.

The chemical formulas of the I_2 releasing and the titration of Fe^{3+} with $Na_2S_2O_3$ solution are given below.

 $2Fe^{3+} + 2I^{-} \rightleftharpoons 2Fe^{2+} + I_{2} \qquad \cdots (1)$ $I_{2} + 2Na_{2}S_{2}O_{3} \rightleftharpoons 2NaI + Na_{2}S_{4}O_{6} \qquad \cdots (2)$

Though chemical formula (1) is a reversible reaction, the reaction proceeds to the right side quantitatively in a presence of excess Γ and in a strong acid solution (equivalent to 0.1-0.4mol/L hydrochloric acid).

2. Precautions

- 1) Perform redox titration of Fe³⁺ under a strong acidic condition (equivalent to 0.1-0.4mol/L hydrochloric acid).
- 2) Handle the reagents in a well ventilated room or a draft chamber.

3. Post-measurement procedure

Wash the electrode with pure water and then keep it soaked in pure water so as not to dry the liquid junction of it.

4. Apparatus

Main unit	:	Automatic potentiometric titrator (preamplifier : STD)				
Electrode*	:	Combined platinum electrode				
		(inner solution : 3.3mol/L potassium chloride aqueous solution)				

*If adjusting pH of solution, a pH glass electrode is required.

5. Reagents		
Titrant	:	0.1mol/L Na ₂ S ₂ O ₃ solution
Addition reagent	:	KI

6. Procedure

-Measurement-

- 1) Add 5mL of a sample into a 200mL tall beaker.
- 2) Add 100mL of pure water. *
- 3) Add 2g of KI and dissolve it, and then cap on the beaker and leave to stand in a dark place for 10 minutes.
- 4) Titrate with $0.1 \text{mol/L} \text{ Na}_2\text{S}_2\text{O}_3$ solution to measure Fe³⁺ concentration.

*If acid concentration of the solution is out of a range equivalent to 0.1-0.4mol/L hydrochloric acid after adding pure water, adjust it by concentrated hydrochloric acid, 25w/v% sodium hydroxide solution or others.

7. Calculation

$Fe^{3+}(g/L) = (EP1 - BL1) \times TF \times C1 \times K1 / S$

EP1	:	Titer (mL)
BL1	:	Titer for blank titration $= 0.0000$ mL
TF	:	Factor of titrant $= 1.0146$
C1	:	Concentration conversion coefficient = 5.585mg/mL
K1	:	Unit conversion coefficient $= 1$
S	:	Quantity of sample (mL)

8. Example

-Titration parameter-

< <u> Titr. Mode></u>	: Auto Intermit	<u><ctrl. para.=""></ctrl.></u>	
< <u> Titr. Form></u>	: EP Stop	Number of EP	: 1
		End Sense	: Auto
< <u> Titr. Para.></u>		Gain	: 1
Max. Volume	: 20 (mL)	Data Sampling	: Auto
Channel/Unit(Ctrl.)	: Ch2, mV	Ctrl. Speed	: Standard
Channel/Unit(Ref.)	: Off	Other Ctrl.	: Standard
pH Polarity	: Standard	Auto Int. Mode	: Standard
Titr. Type Check	: No Check	Stirrer Speed	: 4
Direction	: Auto		
Wait Time	: 0 (s)		
Dose Mode	: None		

(The measurement parameter and the titration curve are an example of our automatic potentiometric titrator. In some titrators, parameter item may be different or other parameter items may be added.)

-Results-

9. Summary

In this measurement, the results showed a good repeatability with below 1.5% RSD (relative standard deviation).

In some samples, verification of the measurement capability is required. In such case, please contact us.

10. References

1) S. Takagi, "*Experiments and calculations of quantitative analysis*", Vol.2, revised ed., KYORITSU SHUPPAN Co., Ltd. (1969)

